|簡體中文

比思論壇

 找回密碼
 按這成為會員
搜索



查看: 92|回復: 0
打印 上一主題 下一主題

可扩展光芯片每秒分类近20亿张图像

[複製鏈接]

5229

主題

1

好友

1萬

積分

教授

Rank: 8Rank: 8

  • TA的每日心情

    2024-4-17 22:16
  • 簽到天數: 247 天

    [LV.8]以壇為家I

    推廣值
    0
    貢獻值
    1
    金錢
    7461
    威望
    15989
    主題
    5229
    跳轉到指定樓層
    樓主
    發表於 2022-6-25 18:25:53 |只看該作者 |倒序瀏覽

    美国科学家在最新一期《自然》杂志发表论文称,他们开发了首块可扩展的基于深度神经网络的光子芯片,每秒可对20亿张图像进行直接分类,而无需时钟、传感器或大内存模块,有望促进人脸识别、自动驾驶等领域的发展。

    模仿人脑工作的深度神经网络现在通常为计算机视觉、语音识别等提供支持。目前数字芯片上的消费级图像分类技术每秒可执行数十亿次计算,速度足以满足大多数应用,但更复杂的图像,如识别运动物体、3D物体或人体显微细胞分类仍面临不少障碍。

    首先,这些系统通常使用基于数字时钟的平台,如图形处理单元(GPU)来实现,这将它们的计算速度限制在时钟频率上,计算必须逐个进行。其次,传统电子设备将内存和处理单元分开,数据穿梭耗费时间。此外,原始图像数据通常需要转换为数字电子信号,耗时较长,而且需要大内存单元来存储图像和视频,引发潜在的隐私问题。

    鉴于此,宾夕法尼亚大学电气和系统工程副教授弗瑞兹·阿发雷托尼等人开发出一款可扩展芯片,每秒可对近20亿张图像进行分类。这是第一个完全在集成光子设备上以可扩展方式实现的深度神经网络,整个芯片大小只有9.3平方毫米,消除了传统计算机芯片中的4个主要耗时障碍:光信号到电信号的转换、将输入数据转换为二进制格式、大存储模块以及基于时钟的计算。

    阿发雷托尼解释说,该芯片上的光学神经元通过光线相互连接,形成一个由许多“神经元层”组成的深层网络。信息通过“神经元层”传递,每一步都对图像分类,使快速处理信息成为可能,最新芯片可在半纳秒内完成整个图像分类,而传统数字计算机芯片在同样时间内只能完成一个计算步骤。

    研究人员表示,可通过添加更多神经层来扩展这一深层网络,使芯片能以更高分辨率读取更复杂图像中的数据。此外,任何可转换为光的信号,如音频和语音,都可使用这项技术几乎瞬间进行分类。


    您需要登錄後才可以回帖 登錄 | 按這成為會員

    重要聲明:本論壇是以即時上載留言的方式運作,比思論壇對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本論壇受到「即時上載留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們比思論壇有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ),同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,敬請自律。本網站保留一切法律權利。

    手機版| 廣告聯繫

    GMT+8, 2024-11-18 14:32 , Processed in 0.013386 second(s), 16 queries , Gzip On, Memcache On.

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回頂部